

GCE A LEVEL MARKING SCHEME

SUMMER 2022

**A LEVEL (NEW)
FURTHER MATHEMATICS
UNIT 4 FURTHER PURE MATHEMATICS B
1305U40-1**

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE A LEVEL FURTHER MATHEMATICS

UNIT 4 FURTHER PURE MATHEMATICS B

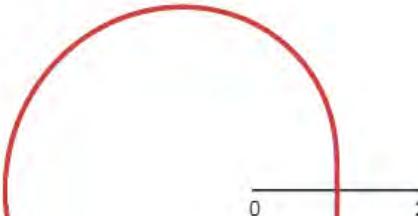
SUMMER 2022 MARK SCHEME

1. a)	<p>Differentiating</p> $f'(x) = 3 \cosh^2 x \sinh x - 3 \sinh x \text{ oe}$ <p>At a stationary point, $f'(x) = 0$, $\therefore 3 \cosh^2 x \sinh x - 3 \sinh x = 0$ $3 \sinh x (\cosh^2 x - 1) = 0$</p> <p>THEN</p> $3 \sinh x = 0$ $x = 0$ <p>or</p> $\cosh^2 x - 1 = 0$ $\cosh x = 1 \quad \text{or} \quad \cosh x = -1$ $x = 0 \quad \text{no solutions}$ <p>\therefore The only stationary point is at $x = 0$.</p> <p>OR</p> $\text{As } \cosh^2 x - 1 = \sinh^2 x$ $3 \sinh x (\cosh^2 x - 1) = 3 \sinh^3 x = 0$ $\therefore \sinh^3 x = 0$ $\sinh x = 0$ $x = 0$ <p>\therefore The only stationary point is at $x = 0$.</p>	M1 A1 m1	If identities used, must be a valid attempt at differentiation
		A1 A1 (A1) (A1)	Award for any solution of hyperbolic equation Must be seen to discard equations with no solutions and show all remaining equations lead to $x = 0$ Correct use of identity

2.	<p>Let $z^4 = 9 - 3\sqrt{3}i$</p> $ z^4 = \sqrt{9^2 + (3\sqrt{3})^2} = \sqrt{108} \text{ or } 6\sqrt{3}$ <p>Finding the radius of the circle e.g. Radius of circle = $\sqrt[8]{108}$ or $108^{\frac{1}{8}}$ = 1.795 ...</p> <p>Circle: $x^2 + y^2 = 3.22$ or 1.795^2</p>	B1 M1 A1 A1	si FT their $ z^4 $ FT their radius Allow 1.8^2 Allow $ z = 108^{1/8}$
3. a)	<p>Substituting $\sin \theta = \frac{2t}{1+t^2}$ and $\cos \theta = \frac{1-t^2}{1+t^2}$</p> $4 \times \frac{2t}{1+t^2} + 5 \times \frac{1-t^2}{1+t^2} = 3$ $4 \times 2t + 5(1-t^2) = 3(1+t^2) \text{ oe}$ $8t + 5 - 5t^2 = 3 + 3t^2$ $4t^2 - 4t - 1 = 0$	M1 A1 A1	
b)	<p>Solving $4t^2 - 4t - 1 = 0$</p> $t = \frac{1 \pm \sqrt{2}}{2} \quad (-0.207106... \text{ or } 1.207106...)$ <p>Attempting to solve for θ</p> $\tan \frac{\theta}{2} = \frac{1-\sqrt{2}}{2} \quad \text{or} \quad \tan \frac{\theta}{2} = \frac{1+\sqrt{2}}{2}$ $\frac{\theta}{2} = -11.7 \dots (+180n)$ <p>or</p> $\frac{\theta}{2} = 50.36 \dots (+180n)$ <p>Then, the general solution, $\theta = (-23.4(018 \dots) + 360n)^\circ$ oe or $\theta = (100.7(214 \dots) + 360n)^\circ$ oe</p>	M1 A1 M1 A1 A1 (A1) A1 A1	MOA0 no working FT their t $\frac{\theta}{2} = -0.2 \dots (+\pi n)$ $\frac{\theta}{2} = 0.87 \dots (+\pi n)$ $\theta = (-0.408 \dots + 2\pi n)^\circ$ $\theta = (1.758 \dots + 2\pi n)^\circ$ M0 M0 for -23.4... and 100.7... without working
4.	<p>Volume = $\pi \int_1^3 \sin^2 y \, dy$</p> $\pi \int_1^3 \frac{1 - \cos 2y}{2} \, dy$ $\pi \left[\frac{1}{2}y - \frac{1}{4}\sin 2y \right]_1^3$ $\pi \left[\left(\frac{3}{2} - \frac{1}{4}\sin 6 \right) - \left(\frac{1}{2} - \frac{1}{4}\sin 2 \right) \right]$ <p>Volume = 4.08</p>	B1 M1 A1 m1 A1	Correct notation required Integrable form with no more than 1 slip oe cao Attempt to substitute in correct limits cao

5. a)	$\left(\begin{array}{ccc c} 1 & 2 & 0 & 3 \\ 2 & -5 & 3 & 8 \\ 0 & 6 & -2 & 0 \end{array} \right)$ $\left(\begin{array}{ccc c} 1 & 2 & 0 & 3 \\ 0 & -9 & 3 & 2 \\ 0 & 6 & -2 & 0 \end{array} \right)$ $\left(\begin{array}{ccc c} 1 & 2 & 0 & 3 \\ 0 & -9 & 3 & 2 \\ 0 & 0 & 0 & \frac{3}{3} \end{array} \right)$ <p>Valid statement. Eg. As $0x + 0y + 0z \neq \frac{4}{3}$ there are no solutions.</p>	M1 A1 A1 E1	Attempt at row reduction 1 row a multiple of another row oe If M0, SC1 $\det A = 0$ SC1 No unique solutions
b)	A correct statement involving 3 planes with no incorrect statements e.g. 3 planes do not meet at a single point	B1	FT their (a)
6.	$\cos 2\theta - \cos 4\theta = -2 \sin \frac{2\theta + 4\theta}{2} \sin \frac{2\theta - 4\theta}{2}$ $-2 \sin 3\theta \sin(-\theta) = \sin 3\theta$ $2 \sin 3\theta \sin \theta - \sin 3\theta = 0$ $\sin 3\theta (2 \sin \theta - 1) = 0$ $\sin 3\theta = 0 \quad \sin \theta = \frac{1}{2}$ $3\theta = 0, \pi, 2\pi, 3\pi$ $\theta = 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi \quad \theta = \frac{\pi}{6}, \frac{5\pi}{6}$	M1 A1 A1 A1 A1A1	M0 no working FT one slip for A1A1A1 Both solutions A1 each set of solutions If A1A1, penalise -1 for use of degrees
7. a)	$4x^2 + 10x - 24 = 4 \left[x^2 + \frac{5}{2}x - 6 \right]$ $= 4 \left[\left(x + \frac{5}{4} \right)^2 - \frac{121}{16} \right]$ $= 4 \left(x + \frac{5}{4} \right)^2 - \frac{121}{4}$ <p>Therefore, $a = 4$ $b = \frac{5}{4}$ $c = -\frac{121}{4}$</p>	M1 m1 A1	$4x^2 + 10x - 24$ $= 4 \left[x^2 + \frac{5}{2}x \right] - 24$ oe

b)	<p>METHOD 1:</p> $\int_3^5 \frac{6}{\sqrt{4x^2 + 10x - 24}} dx$ $= \int_3^5 \frac{6}{\sqrt{4\left(x + \frac{5}{4}\right)^2 - \frac{121}{4}}} dx$ $= \int_3^5 \frac{6}{2\sqrt{\left(x + \frac{5}{4}\right)^2 - \frac{121}{16}}} dx$ $= \left[3 \cosh^{-1} \left(\frac{x + \frac{5}{4}}{\sqrt{\frac{121}{16}}} \right) \right]_3^5$ $= \left[3 \cosh^{-1} \left(\frac{4x + 5}{11} \right) \right]_3^5$ $= \left[3 \cosh^{-1} \left(\frac{25}{11} \right) - 3 \cosh^{-1} \left(\frac{17}{11} \right) \right]$ $= 1.379$	M1 m1 A1 m1 A1	M0 no working FT (a) for equivalent difficulty Extracting a factor of $\sqrt{4}$ from denominator oe cao Must be 3d.p.
	<p>METHOD 2:</p> $\int_3^5 \frac{6}{\sqrt{4x^2 + 10x - 24}} dx$ $= \int_3^5 \frac{6}{\sqrt{4\left(x + \frac{5}{4}\right)^2 - \frac{121}{4}}} dx$ $= \int_3^5 \frac{6}{2\sqrt{\left(x + \frac{5}{4}\right)^2 - \frac{121}{16}}} dx$ $= \left[3 \ln \left\{ x + \frac{5}{4} + \sqrt{\left(x + \frac{5}{4}\right)^2 - \frac{121}{16}} \right\} \right]_3^5$ $= 3 \ln \left[\frac{25}{4} + \sqrt{\frac{504}{16}} \right] - 3 \ln \left[\frac{17}{4} + \sqrt{\frac{168}{16}} \right]$ $= 3 \ln \left[\frac{25 + \sqrt{504}}{17 + \sqrt{168}} \right] = 3 \ln \left[\frac{25 + 6\sqrt{14}}{17 + 2\sqrt{42}} \right]$ $= 1.379$	(M1) (m1) (A1) (m1) (A1)	M0 no working FT (a) for equivalent difficulty Extracting a factor of $\sqrt{4}$ from denominator cao Must be 3d.p.


8.	$x = \sinh y$ $x = \frac{e^y - e^{-y}}{2}$ $2xe^y = (e^y)^2 - 1$ $\therefore (e^y)^2 - 2xe^y - 1 = 0$ <p>Using quadratic formula,</p> $e^y = \frac{2x \pm \sqrt{4x^2 + 4}}{2} \quad (= x \pm \sqrt{x^2 + 1})$ $y = \ln(x \pm \sqrt{x^2 + 1})$ <p>As $x - \sqrt{x^2 + 1} < 0$,</p> $\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})$	B1 B1 M1 A1 A1 B1	Allow omission of \pm Justification may be seen earlier
9.	<p>a) i)</p> $\left(\cos \frac{\theta}{3} + i \sin \frac{\theta}{3}\right)^3$ $\cos^3 \frac{\theta}{3} + 3 \cos^2 \frac{\theta}{3} \left(i \sin \frac{\theta}{3}\right) + 3 \cos \frac{\theta}{3} \left(i \sin \frac{\theta}{3}\right)^2 + \left(i \sin \frac{\theta}{3}\right)^3$ $= \cos^3 \frac{\theta}{3} + 3i \cos^2 \frac{\theta}{3} \sin \frac{\theta}{3} - 3 \cos \frac{\theta}{3} \sin^2 \frac{\theta}{3} - i \sin^3 \frac{\theta}{3}$	M1 A1	Unsimplified Allow cis notation
	<p>ii)</p> $\left(\cos \frac{\theta}{3} + i \sin \frac{\theta}{3}\right)^3 = \cos \theta + i \sin \theta$ $\therefore \cos \theta = \cos^3 \frac{\theta}{3} - 3 \cos \frac{\theta}{3} \sin^2 \frac{\theta}{3}$ $= \cos^3 \frac{\theta}{3} - 3 \cos \frac{\theta}{3} \left(1 - \cos^2 \frac{\theta}{3}\right)$ $= 4 \cos^3 \frac{\theta}{3} - 3 \cos \frac{\theta}{3}$	B1 M1 A1 A1	si FT (i) for sign error only cao convincing
b)	<p>METHOD 1:</p> $\frac{\cos \theta}{\cos \frac{\theta}{3}} = \frac{4 \cos^3 \frac{\theta}{3} - 3 \cos \frac{\theta}{3}}{\cos \frac{\theta}{3}} = 1$ $4 \cos^3 \frac{\theta}{3} - 4 \cos \frac{\theta}{3} = 0$ $4 \cos \frac{\theta}{3} \left(\cos^2 \frac{\theta}{3} - 1\right) = 0$ $\cos \frac{\theta}{3} = 0 \text{ (not a possible solution in this equation)}$ <p>or</p> $\cos \frac{\theta}{3} = \pm 1$ <p>When $\cos \frac{\theta}{3} = 1$, $\frac{\theta}{3} = 2n\pi$</p> $\therefore \theta = 6n\pi$ <p>When $\cos \frac{\theta}{3} = -1$, $\frac{\theta}{3} = \pi + 2n\pi$</p> $\therefore \theta = 3\pi + 6n\pi$ <p>General solution: $\theta = 3n\pi$</p>	M1 A1 A1 M1 A1	Substitution Removing fraction All three (including ± 1) Use of general solution of $\cos \theta$ Either θ

<p>METHOD 2:</p> $\frac{\cos \theta}{\cos \frac{\theta}{3}} = 1$ $\cos \theta - \cos \frac{\theta}{3} = 0$ <p>Then,</p> $-2 \sin \frac{\theta + \frac{\theta}{3}}{2} \sin \frac{\theta - \frac{\theta}{3}}{2} = 0$ <p>Therefore,</p> $\sin \frac{2\theta}{3} = 0 \quad \text{or} \quad \sin \frac{\theta}{3} = 0$ $\frac{2\theta}{3} = n\pi \quad \text{or} \quad \frac{\theta}{3} = n\pi$ $\theta = \frac{3}{2}n\pi \quad \text{or} \quad \theta = 3n\pi$ <p>Odd multiple of $\frac{3}{2}n\pi$ are not a solution because $\cos \theta = 0$</p> $\theta = 3n\pi$	<p>(B1)</p> <p>(M1) (A1)</p> <p>(A1)</p> <p>(M1)</p> <p>(A1)</p>	<p>Both</p>	

11.	a) i)	$y = e^{3x} \sin^{-1} x$ Use of product rule while differentiating $\frac{dy}{dx} = e^{3x} \cdot \frac{1}{\sqrt{1-x^2}} + 3e^{3x} \sin^{-1} x$	M1 A2	A1 each term ISW
	ii)	METHOD 1: $y = \ln(\cosh(2x^2 + 7x))^2 = 2 \ln(\cosh(2x^2 + 7x))$ $\frac{dy}{dx} = \frac{2 \times \sinh(2x^2 + 7x) \times (4x + 7)}{\cosh(2x^2 + 7x)}$ METHOD 2: $y = \ln(\cosh(2x^2 + 7x))^2$ $\frac{dy}{dx} = \frac{2 \cosh(2x^2 + 7x) \times \sinh(2x^2 + 7x) \times (4x + 7)}{(\cosh(2x^2 + 7x))^2}$ $\frac{dy}{dx} = \frac{2 \times \sinh(2x^2 + 7x) \times (4x + 7)}{\cosh(2x^2 + 7x)}$	M1 A1 A1 A1 (M1) (A1) (A1) (A1)	Log rule AND chain rule $\sinh(2x^2 + 7x)$ $4x + 7$ oe Fully correct ISW Chain rule $\sinh(2x^2 + 7x)$ $4x + 7$ oe Fully correct ISW
	b)	METHOD 1: $1 = \frac{1}{\sqrt{1 + (y^2)^2}} \times \left(2y \frac{dy}{dx} \right)$ $\sqrt{1 + y^4} = 2y \frac{dy}{dx}$ $\frac{dy}{dx} = \frac{\sqrt{1 + y^4}}{2y}$ METHOD 2: $y^2 = \sinh x$ $2y \frac{dy}{dx} = \cosh x$ $\frac{dy}{dx} = \frac{\cosh x}{2y}$ METHOD 3: $y = \pm \sqrt{\sinh x}$ $\frac{dy}{dx} = \pm \frac{1}{2} \sinh^{-\frac{1}{2}} x \cosh x$ THEN: When $x = 1$, $y = \pm 1.084$, $\frac{dy}{dx} = \pm 0.7117$ $y - 1.084 = 0.7117(x - 1)$ $y + 1.084 = -0.7117(x - 1)$	M1 A1 A1 (M1) (A1) (A1) (A1) (A1) (M1) (A1) (A1) (A1) B1 A1 B1 B1	Must see chain rule Differentiate \sinh^{-1} $2y \frac{dy}{dx}$ $2y \frac{dy}{dx}$ Cosh $\frac{1}{2} \sinh^{-\frac{1}{2}} x$ Cosh \pm Both cao Both FT their y and dy/dx FT their y and dy/dx

12.	<p>Solve auxiliary $3t^2 + 5t - 2 = 0$ $(3t - 1)(t + 2) = 0$ $t = \frac{1}{3}$ or $t = -2$</p> <p>Complementary function: $y = Ae^{\frac{1}{3}x} + Be^{-2x}$</p> <p>Use particular integral of the form $Cx^2 + Dx + E$</p> $\frac{dy}{dx} = 2Cx + D$ $\frac{d^2y}{dx^2} = 2C$ <p>Therefore,</p> $6C + 5(2Cx + D) - 2(Cx^2 + Dx + E) = 8 + 6x - 2x^2$ $-2C = -2 \rightarrow C = 1$ $10C - 2D = 6 \rightarrow D = 2$ $6C + 5D - 2E = 8 \rightarrow E = 4$ <p>General Solution:</p> $y = Ae^{\frac{1}{3}x} + Be^{-2x} + x^2 + 2x + 4$ $\frac{dy}{dx} = \frac{1}{3}Ae^{\frac{1}{3}x} - 2Be^{-2x} + 2x + 2$ <p>When $x = 0$, $y = A + B + 4 = 6$</p> $\frac{dy}{dx} = \frac{1}{3}A - 2B + 2 = 5$ <p>Solving, $A = 3$ and $B = -1$</p> <p>Therefore,</p> $y = 3e^{\frac{1}{3}x} - e^{-2x} + x^2 + 2x + 4$	<p>M1</p> <p>A1</p> <p>M1</p> <p>A1</p> <p>A1</p> <p>A1</p> <p>M1</p> <p>A1</p> <p>M1</p> <p>A1</p> <p>B1</p> <p>B1</p>	<p>M0A0 no working</p> <p>Both values</p> <p></p> <p>Both $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$</p> <p>Substitution</p> <p>All values</p> <p>FT C,D,E for M1A1M1A1 Sub and differentiate</p> <p>Substitution</p> <p>Both y and $\frac{dy}{dx}$</p> <p>cao</p> <p>cao</p>
-----	---	---	--

13. a)		G1	For shape , to include reflection in the initial line.
		G1	Fully correct
b) i)	$y = r \sin \theta$ $y = (2 - \cos \theta) \sin \theta$ $y = 2 \sin \theta - \sin \theta \cos \theta$ THEN $\left(y = 2 \sin \theta - \frac{1}{2} \sin 2\theta \right)$ $\frac{dy}{d\theta} = 2 \cos \theta - \cos 2\theta$ When parallel to initial line, $2 \cos \theta - \cos 2\theta = 0$ $2 \cos \theta - (2 \cos^2 \theta - 1) = 0$ $2 \cos^2 \theta - 2 \cos \theta - 1 = 0$ OR $\frac{dy}{d\theta} = 2 \cos \theta - (\cos^2 \theta - \sin^2 \theta)$ When parallel to initial line, $2 \cos \theta - (\cos^2 \theta - \sin^2 \theta) = 0$ $2 \cos \theta - \cos^2 \theta + (1 - \cos^2 \theta) = 0$ $2 \cos^2 \theta - 2 \cos \theta - 1 = 0$	M1 A1 m1 A1	convincing
ii)	Solving $\cos \theta = \frac{2 \pm \sqrt{4 + 8}}{4}$ $\cos \theta = 1.366$ therefore no solutions or $\cos \theta = -0.366$ $\therefore \theta = 1.9455$ or 4.3377 $r = 2.366$	M1 A1 A1 A1 B1	Both values FT their θ

14.	$\frac{6x^2 + 2x + 16}{x^3 - x^2 + 3x - 3} = \frac{6x^2 + 2x + 16}{(x-1)(x^2 + 3)}$ $\frac{6x^2 + 2x + 16}{(x-1)(x^2 + 3)} = \frac{A}{x-1} + \frac{Bx + C}{x^2 + 3}$ $6x^2 + 2x + 16 = A(x^2 + 3) + (Bx + C)(x - 1)$ <p>When $x = 1$, $24 = 4A$ $\rightarrow A = 6$</p> <p>When $x = 0$, $16 = 3A - C$ $\rightarrow C = 2$</p> <p>Compare coefficients of x^2: $6 = A + B$ $\therefore B = 0$</p> $\int_2^4 \frac{6x^2 + 2x + 16}{x^3 - x^2 + 3x - 3} dx$ $= \int_2^4 \left(\frac{6}{x-1} + \frac{2}{x^2 + 3} \right) dx$ $= \left[6 \ln(x-1) + \frac{2}{\sqrt{3}} \tan^{-1} \frac{x}{\sqrt{3}} \right]_2^4$ $= 7.93362 - 0.98966 = 6.944$	M1 A1 M1 A1 A2 M1 A2 A1	Linear \times Quadratic FT their factorising if linear \times quadratic of equivalent difficulty A2 all 3 values A1 any 2 values If M0, SC1 for $A = 6$, $B = 0$, $C = 2$. FT their A , B , C provided $a \neq 0$ and $c \neq 0$ A1 each term cao Answer only 0 marks
-----	--	--	--